个人简介:
杜守航,博士、副教授、硕士生导师。
2021年博士毕业于北京大学地图学与地理信息系统专业。
中国测绘学会对地观测工作委员会委员,中国测绘学会智能化测绘工作委员会委员。近年来,主持国家自然科学基金青年基金项目、中国博士后科学基金特别资助项目、中国博士后科学基金面上项目等9项,参与国家重点研发计划、国家自然科学基金、企事业单位横向课题等项目10余项。发表一作/通讯论文23篇,其中SCI论文19篇,Remote Sensing of Environment、ISPRS Journal of Photogrammetry and Remote Sensing等中科院TOP期刊论文7篇,论文引用800余次。授权发明专利3项,授权软件著作权2项。获全国“高校GIS新秀”等荣誉称号,成果入选外交部《地球大数据支撑可持续发展目标报告(2021)》,获得2023年地理信息科技进步一等奖和2022年地理信息科技进步二等奖。
主讲本科生《测量学基础》、《人工智能遥感应用》等课程。
电子邮件:dush@cumtb.edu.cn
个人学术主页:https://dushouhang.github.io//
研究方向:
1. 城市大数据智能理解与分析
2. 深度学习遥感影像智能解译
3. 自然资源监测与生态环境评价
科研项目:
1. 国家自然科学基金青年基金项目,多模态数据的多维度特征融合与城市功能区精细提取研究,2023-01 至 2025-12,主持
2. 中国博士后科学基金特别资助项目,基于多模态数据融合与自监督对比学习的城市功能区提取,2023-08 至 2024-08,主持
3. 中国博士后科学基金面上项目,融合遥感与众源地理数据的城市功能区精细提取,2021-11 至 2023-04,主持
4. 武汉大学测绘遥感信息工程国家重点实验室开放基金,基于全卷积神经网络的单视影像DSM生成方法研究,2023-01至2024-12,主持
5. 煤炭开采水资源保护与利用全国重点实验室开放基金,神东矿区高强度开采下“地表变形-植被扰动”时空演化规律研究,2023-08至2025-07,主持
6. 自然资源要素耦合过程与效应重点实验室开放课题,多源数据融合的矿区精细用地分类与生态环境质量评价,2022-11至2024-10,主持
7. 国家重点研发计划-政府间国际科技创新合作,时空大数据驱动的可持续发展城市人居环境监测评估与应用示范,2022-01 至 2024-12,参与
荣誉奖励:
1. 2024,yl7703永利官网(北京)青年教师教学优秀奖
2. 2023,地理信息科技进步一等奖:矿山生态大数据挖掘与智能监管关键技术及应用,排名 8/20
3. 2023,绿色矿山科技进步一等奖:复杂场景矿山开采与修复活动卫星遥感智能监测关键技术与应用,排名7/15
4. 2023,yl7703永利官网(北京)优秀班主任
5. 2023,第十四届北京市大学生测绘技能竞赛优秀指导教师奖
6. 2023,首届全国煤炭行业矿山AI大模型大赛优秀指导教师奖
7. 2022,地理信息科技进步二等奖:融合星-空-地-众源数据的城市更新重点户识别与动态监管关键技术及应用,排名6/12
8. 2022,yl7703永利官网(北京)优秀本科生全程导师奖
9. 2021,北京大学优秀毕业生
10. 2020,高校GIS新秀奖
11. 2020,博士研究生国家奖学金
第一作者/通讯作者论文:
1. Du, S., Liu, H., Xing, J., & Du, S. (2024). Fusing multimodal data of nature-economy-society for large-scale urban building height estimation. International Journal of Applied Earth Observation and Geoinformation, 129, 103809. (SCI, IF= 7.6, JCR一区, 中科院一区TOP)
2. Du, S., Xing, J., Wang, S., Wei, L., & Zhang, Y. (2024). STMNet: Scene Classification-Assisted and Texture Feature-Enhanced Multi-Scale Network for Large-Scale Urban Informal Settlement Extraction from Remote Sensing Images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. (SCI, IF= 4.7, JCR一区, 中科院二区TOP)
3. Du, S., Zhang, Y., Sun, W., & Liu, B. (2024). Quantifying heterogeneous impacts of 2D/3D built environment on carbon emissions across urban functional zones: A case study in Beijing, China. Energy and Buildings, 319, 114513. (SCI, IF= 6.6, JCR一区, 中科院二区TOP)
4. Wang, C., Du, S.*, Sun, W., & Fan, D. (2023). Self-supervised learning for high-resolution remote sensing images change detection with variational information bottleneck. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 16, 5849-5866. (SCI, IF= 4.7, JCR一区, 中科院二区TOP)
5. Du, S., Du, S., Liu, B., & Zhang, X. (2021). Mapping large-scale and fine-grained urban functional zones from VHR images using a multi-scale semantic segmentation network and object based approach. Remote Sensing of Environment, 261, 112480. (SCI, IF= 11.1, JCR一区, 中科院一区TOP)
6. Du, S., Du, S., Liu, B., & Zhang, X. (2021). Incorporating DeepLabv3+ and object-based image analysis for semantic segmentation of very high resolution remote sensing images. International Journal of Digital Earth, 14(3), 357-378. (SCI, IF=3.7, JCR一区, 中科院一区TOP)
7. Du, S., Zhang, Y., Zou, Z., Xu, S., He, X., & Chen, S. (2017). Automatic building extraction from LiDAR data fusion of point and grid-based features. ISPRS Journal of Photogrammetry and Remote Sensing, 130, 294-307. (SCI, IF=10.6, JCR一区, 中科院一区TOP)
8. Du, S., Xing, J., Wang, S., Xiao, X., Li, J., & Liu, H. (2024). LUMNet: Land Use Knowledge Guided Multiscale Network for Height Estimation from Single Remote Sensing Images. IEEE Geoscience and Remote Sensing Letters. (SCI, IF= 4.0, JCR一区)
9. Zhang, S., Xia, Y., Li, Z., Li, X., Wu, Y., Liu, P., & Du, S.* (2024). An Assessment of Urban Residential Environment Quality Based on Multi-Source Geospatial Data: A Case Study of Beijing, China. Land, 13(6), 823. (SSCI, IF= 3.2, JCR二区)
10. Zheng, Y., Du, S.*, Sun, W., Feng, C., & Su, Q. (2024). Spatiotemporal patterns of net regional productivity and its causes throughout Ordos, China. Environmental Science and Pollution Research, 31(14), 22038-22054. (SCI, IF= 5.8, JCR一区)
11. Du, S., Wu, Y., Guo, L., Fan, D., & Sun, W. (2024). How Does the 2D/3D Urban Morphology Affect the Urban Heat Island across Urban Functional Zones? A Case Study of Beijing, China. ISPRS International Journal of Geo-Information, 13(4), 120. (SCI, IF= 2.8, JCR二区)
12. Du, S., Zheng, M., Guo, L., Wu, Y., Li, Z., & Liu, P. (2024). Urban building function classification based on multisource geospatial data: a two-stage method combining unsupervised and supervised algorithms. Earth Science Informatics, 17(2), 1179-1201. (SCI, IF= 2.7, JCR二区)
13. Du, S., Xing, J., Du, S., Cui, X., Xiao, X., Li, W., & Wang, S. (2023). IMG2HEIGHT: height estimation from single remote sensing image using a deep convolutional encoder-decoder network. International Journal of Remote Sensing, 44(18), 5686-5712. (SCI, IF= 3.0, JCR二区)
14. Li, J., Xing, J., Du, S.*, Du, S., Zhang, C., & Li, W. (2022). Change detection of open-pit mine based on siamese multiscale network. IEEE Geoscience and Remote Sensing Letters, 20, 1-5. (SCI, IF= 4.0, JCR一区)
15. Du, S., Xing, J., Li, J., Du, S., Zhang, C., & Sun, Y. (2022). Open-pit mine extractionfrom very high resolution remote sensing images using OM-DeepLab. Natural Resources Research, 1-22. (SCI, IF=4.8, JCR一区)
16. Du, S., Li, W., Li, J., Du, S., Zhang, C., & Sun, Y. (2022). Open-pit mine change detection from high resolution remote sensing images using DA-UNet++ and object-based approach. International Journal of Mining, Reclamation and Environment, 1-24. (SCI, IF=2.7, JCR二区)
17. Du, S., Du, S., Liu, B., Zhang, X., & Zheng, Z. (2020). Large-scale urban functional zone mapping by integrating remote sensing images and open social data. GIScience & Remote Sensing, 57(3), 411-430. (SCI, IF=6.0, JCR一区)
18. Du, S., Du, S., Liu, B., & Zhang, X. (2019). Context-enabled extraction of large-scale urban functional zones from very-high-resolution images: A multiscale segmentation approach. Remote Sensing, 11(16), 1902. (SCI, IF=4.2, JCR一区)
19. Du, S., Du, S.(2019). Land cover classification using remote sensing images and lidar data. In IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium, 2019 (pp. 2479-2482). IEEE. (EI)
20. Du, S., Zhang, Y., Qin, R., Yang, Z., Zou, Z., Tang, Y., & Fan, C. (2016). Building change detection using old aerial images and new LiDAR data. Remote Sensing, 8(12), 1030. (SCI, IF=4.2, JCR一区)
21. 杜守航,李炜,邢江河等.基于FM-UNet++和高分二号卫星影像的露天矿区范围变化检测[J].煤田地质与勘探,2023,51(07):130-139. (EI)